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Perturbed resonant solutions of an essentially nonlinear real system containing two phases 
and a quasiconstant vector, are constructed over an infinite time interval. The first Lia- 
punov method and well known Weierstrass theorems on implicit functions are used to derive 

the sufficient conditions of stability of perturbed resonant motions. The results obtained 

are interesting and may find application to certain problems of the theory of nonlinear 
oscillations. 

1. Statrment of the problem, We investigate, in the resonant region, a per- 
turbed system of (! + 2) equations of the form 

da I dt = EA (&a, 9, e) 

d$ / dt = Q (0) + eY (8, a,$, e). de!dl=a(rr)+e~(e,o,lD,c) (1-i) 

Here t E ito, (x) is time, e E [- ~0, PO) is a small parameter, u is a quasiconstant 
1 -dimensional vector ( I 0 - a~* I< b) , while $ and 6 denote scalar phases ( 1 I# 1, 18 I< 
<c-= ). We assume that the functions A, Q, Y, a and ,l; are sufficiently smooth in all 
their arguments within the indicated region and are periodic in 6 and \p , the periods 
being equal to 21 / v and ZJX, respectively. The degree of smoothness shall be established 

below. We also assume that at least one of the phases, say 6, is rotating, i.e. u (u) > 0. 
We construct solutions of (1.1) and investigate their Liapunov stability. These solutions 

are such that when e = 0 then they have the form 

QU, 90 = a ((10) (f - to) + a, 00 = a (ao)(t - 10) + B 

while for t # 0 they do not differ appreciably from the above magnitudes for all real 
i (in the above expressions 00. a and p are certain constants). In the present paper we 

study the resonant case, when nrQ (ao) = nm (ao) (1.2) 

where m and R are “not very large” integers [l] and R may become equal to zero, i.e. 
the phases $ may be oscillating. 

System (1.1) appears in many’ problems of the theory of nonlinear oscillations and in 
particular, in the problems on forced motions in a system with one degree of freedom 
and little varying parameters, in certain strongly connected autonomous systems, e. a. 

Similar systems were investigated in p and 31 using the concept of averaging over the 
interval 61 - J / I/F A particular case of the system (1.1) (1 = 1, 8 f \;r) was inves- 
tigated by the author, who considered its general and particular solution [4 and 53 over 

the interval f E [b, 09). 
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We also note that the analysis of the Liapunov stability of the steady resonant modes 
of the considered system (1.1) which is essentially nonlinear, presents great difficulties 
since (I -,- i) groups of solutions correspond to the lL -i- 2) -tuple null characteristic 
index of the unperturbed variational system. Computation of characteristic indices in- 

volves, in this case, fractional powers of e [4- 71, 

2. Construction of the resonant $oIution, We consider the following sys- 
tem of (1 -+. 1) equations 

da/de = of (0, u,y, P). d* i do =O (8) + eF(6, ST,*, e) WI 

which follows from (1. l), and where the following notation is used 

f = A / (s + e,Y), o = R / 6, F = (sy - Q.4’ ) / 0 (5 + e.91 

We assume that the functions f,w and F satisfy the following smoothness requirements: 

1) f and f are continuous in 6; (2) f and w possess first partial derivatives in o,$ 

and E satisfying the Lipschitz conditions in these variables ; (3) f satisfies the Lipschitz 

conditions in a,$ and E in the domain of deffnition of the system (1.1) given above. 
Then, employing the following substitution 

0 = 00 + et, * = (II / mf v (@ - fhf +- f + q4 (00,T = consq (2.2) 

we can obtain a quasilinear system of the form 

(2.3) 

where f* and II are known functions which become identically zero when e = 0. A (T = 
= Zxm f v)-periodic solution of this system can be constructed using the method of con- 

secutive approximations [6- 83. The zeroth approximation to the unknown functions s 
and Y can be found from 

and is given by 
daldB=f(8,ao,~~O), dvoJdB=(ao/aa)os+F(e,au,9o,o) 

, 

ro= S !Jiei -+ C#, 
(1. 

where CO and bo are constants of integration. Vector function +o will be periodic at any 

@, if the following 1 equations hold. 
%+T 

P(ao. 4 = 
s ( 

f 8, S, ;~(0--_80) +r,o 
) 

dedwo)=o (2.4) 

4 

Here and in the following expressions in angle brackets denote the averaging over the 
time 2’. Relations (2.4) and (1.2) together define the constants ao and T. Let (I,,* and T* 

represent a real solution of the system. Then the function PO will be periodic, provided 
that 

holds. 

(2.5) 

In this manner we obtain the following expressions for to and pO : r. = .Q* + C+J and 

&I = yo* + ‘8 in which ru*and yc* are known T-periodic functions of 6. 
First approximation is found from the equations containing terms of the order of e 

and we have the following expression for the vector function XI 
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The first approximation to z will be periodic, if the consrants EO and b satisfy the fol- 

lowing 1 linear equations 
gcoig4= - <11) 

which, together with the linear equation (2.5) form a system defining Q, and &. The 

determinant A - d(ou, &/a+~+, +) (3.6) 

of this system will, in the following, be assumed different from zero, i.e. the system (l.S)., 
(2.4) admits a simple, real root (oo+, 9). 

Thus we have fully defined the periodic functions r, and L/O , Function .~lr is obtained 
similarly e 

(h = consl) 

(FE (e, e) z Fo + P (0, ~0, ~0, e), W I WPCI = - WG) 

and higher approximations to z and g can be obtained from 

4 to + F’ (0, =x_1. yn.+ 4 

into which we insert, consecutively, (tr, y,) etc. It can be shown by induction, that the 

above method will yield any approximation to the periodic solution of (2.3). Indeed, let 

$-1= +-1* + $-I# !+$-I = I/p-P + a,, @ > 1) 

be known periodic functions of ii. Then the right hand side of the vector equation for zP 

will also be known, and this implies that fp = fp* + cr, where cr, is a constant vector. 

Applying the same process to vp.we obtain 

vp = v,* i- b,,, (a0 / aa)oc, = - <(&I I da&* + FO + Fy9) 

Condition of periodicity of the vector function ++I y ields the following system for the 

constants cP and bp: 

aP 
axi7 

bp + ~1’ (0, JQ,* -i- cpt yp 

using well known theorems on implicit functions we can find, for sufficiently small c, 
a unique solution for the above system. The required roots can be found using the methot 

of consecutive approximations 

(a0 I ao)oc,,, = - < (a0 I aa)oep* + Fo + F,,-I* ) 

8P 
m 

.&.Eb cp,t 1 a. P.i $ Cf’ (0, rp’ + cp, i-1’ Yp’ + bp, &*v p)> = 

=-<gJoIP*i- (g)oYp*+G>e> 

(ep . o=cg. bp Q=u 0 

Thus we have constructed a periodic solution of (2.3) which is unique for fixed 08 and 
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z*, together with a resonant solution of the form (2. Z), to the system (2.1). A proof of the 

the above scheme of consecutive approximations is given in 17 and 81. 

To construct a solution to the initial system (I, l), we shall insert the functions (2.2) 
into its last equation. This will yield the following equation with separable variables : 

dti / dr = 0 (og* _t e+ (8, e)) + a’l (0, oa* + e+ (0, e)) 

(n / m) v (e -6o)iT*+ey(8,e),e)~~iIMe,t)~IL>O 

whereM is a known bounded T-periodic function of 6 which, in accordance with (X,2), 
becomes equal to nv / mQ when e = 0. 

From this equation we obtain 

and applying the scheme of consecutive approximations (i > i) ) 
9-t 

9j = &P-IO) 4 1 t & 

s 

(<W -JodO 

&;-(t/(M>)(r-b)+y=q iv = canti E (- 00, 00)) 

we arrive at the general solution of the form 

6 = cp + u@ (qPP a) GE0 

Since the function w is T-periodic in 6 f the quantity 6 has a constant increment T 

over any complete interval of time, the increment being equal to & = T Of) s II, 

The ~mai~ing ~nowns u and 3, are obtained by inserting (2.7) into (2.2), which gives 

u=oo*+s+@p+urt(cp,z), 8) (2.9) 

* = (n / m) v it1 I <M>)(r - to) + V - 801 f T* + 9 (‘I’ + = @, a)* 8) 
Function $ receives the constant increment equal to Znn over any At = II , and Y 

and u are II-periodic. 

3. Inv6rtigrelon of Lfrpunov rtrbllity, We perform,in(2,1),the follow- 
ing substitution e=o(%t)+ff, 9=9(%a)+V 

in which o (Q, e) and 9 0% s) represent the resonant solution (2.2) of the system (2. l), 

constructed in the previous Section, Thus the problem reduces to obtaining such values 

of It, for which the system 

84 

admits a T-periadic solution. Using the method of consecutive approximations we can 
show that some of the characteristic indices A are of the order of a fractional power of 

E ,and that when (# / a~*)(& / aa)o # 0 , then twti of them are of the order ofCi= 16 
and the remaining ones, of the order of e, Consequently, the periodic solution of (3.1) 
and the required indices are of the form 

u (0, e) = 4 (6) + 64 (8) j b”u, (8) f btu, (6 a) 
u (8, e) = UQ (6) + bu1 (0) + @,z (8, 61, L = & f & (4) 

using consecutive approximations analogous to (2,7) we can show that J.1 satisfies the 
following (g + i)-th order equation: 

f- is&’ /hl’ -((dPI&*)(aO /$a)+/ Tj =O 

and this implies that (I - if values of A1 become zero, and remaining two are, respec- 
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tively, 5 I(& dr*)(riw / daJO i Tj “1. Further, we can establish that(GJ / dr*) (b I da),, c 
< 0. is the necessary condition of stability for the constructed resonant solution. 

Conditions of periodic&y of the functions cZ (i), 0) and 14~ (9, 0) imply that the follow- 

ing (1 - I)-th order equation is the defining equation for the quantities ).Z (0) correspon- 
ding to the values ?., = 0 (3.2) 

fdw / d%)lJ . . * (aa / dq fo 0 
T 

JQCX?(W = “Pti~a~Oyy-‘) . . *****.. 
$9 / dolo* l+P,/itr’ 

=o . . . . . . . . . . . . . 

ilP, / dalu’ . . . ~PI /da,.,’ - ia (0) T B‘& ; 6r; 

It should be noted that none of the quantities I, corresponding to the values 11 = 0 
are equal to zero, since by (2.6). IJ (9) -= .& # 0. Thus the considered solution can be 

stable, provided that the real parts of all roots are nonpositive. To complete the discus- 

sion of the sufficient conditions, we must compute the ream&ring two values of Ln using 
the conditions of periodic&y of the functions rZ and us given above. The Kronecker- 
Capelli theorem yields the following expressions for these two values 

- A,’ 0 . . . 0 dl 
0 - li,’ . . . 0 4 

2Lip~(_-btt’_~, . . ‘ * * . . . ‘ . . . * . * * * * * * * so 
A 

i 

0 0 * . * - ?.,’ dl 
(&o/da& (do/W, . . . (8~ / Wo dl+l 

where (j = 1, . . ., l) 
1 

dj=&- 2 -y-- 
3Pj apk 

151 “k, o 

__/*lT<~ [(~)~-~~I da> 

en 

From this it follows that all (I + 1) characteristic indices of the first approximation 
system have the form 

where % _.. W) are the roots of (3.2). 
Thus we’can state that the solution (2.2) is asymptotically stable for Sufficiently small 

c > 0 , provided that the inequality 

and the conditions shown above both hold and that the real parts of the roots of (3.2) 
are negative, and unstable otherwise. The case when the real parts of i., (0) are zero, 
requires additional ~v~~gati~s. It should be noted that the smoothness requirements 
imposed on the function & are more stringent, compared with the conditions given in 

Section 2. 
Using the Andronov-Vitte theorem [73 we can assert that the solution (2.3) and (2.9) 

of the system (1.1) will be Liapunov stable for sufficiently small E > 0 and t > to, if all 
o (a”*) >., have negative real parts. 

When I = i [4 and 95 the conditions of stability become very simple 
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In contrast to other cases of integrable equations of motion of a body with a fixed point, 
determ~ation of the components of the angular velocity of such a body in moving coor- 
dinates in Hess’ solution [l] is not reducible to quadratures ; it reduces to a Riccati differ- 
ential equation, which complicates investigation considerably. 

The case of integrability pointed out by Hess has been investigated by many authors, 
largely by analytical methods p-77. A geometric interpretation of the motion of a body 
in this solution was given by Zhukovskii [8], who used an intermediate moving coordinate 
system. 

The present paper contains a direct interpretation (i. e. one which does not involve 
intermediate coordinate systems) based on Kharlamov’s dynamic [9 and lo] and kinema- 
tic [ll and 121 equations. 


